Many-body localized quantum batteries
نویسندگان
چکیده
منابع مشابه
Quantum quenches in the many-body localized phase
quenches in the many-body localized phase. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Many-body localized (MBL) systems are characterized by the absence of tr...
متن کاملQuantum Many Body System at Integer Coupling
The 1/r2 quantum many body problem, and the closely related Haldane-Shastry 1/r2 Heisenberg chain, are the subject of intense theoretical study at present, due in part to their relationship to an ideal gas obeying fractional statistics (see [1] for a review). One direction of study has been the exact calculation of some ground state correlation functions [1-5]. Let us briefly summarize the main...
متن کاملQuantum Many–Body Problems and Perturbation Theory
We show that the existence of algebraic forms of exactly-solvable A−B− C−D and G2, F4 Olshanetsky-Perelomov Hamiltonians allow to develop the algebraic perturbation theory, where corrections are computed by pure algebraic means. A classification of perturbations leading to such a perturbation theory based on representation theory of Lie algebras is given. In particular, this scheme admits an ex...
متن کاملQuantum Computation, Complexity, and Many-body Physics
By taking advantage of the laws of physics it is possible to revolutionize the way we communicate (transmit), process or even store information. It is now known that quantum computers, or computers built from quantum mechanical elements, provide new resources to solve certain problems and perform certain tasks more efficiently than today’s conventional computers. However, on the road to a compl...
متن کاملConvexity and the quantum many-body problem
We recall some properties of convex functions and, in particular, of the sum of the largest eigenvalues of a Hermitian matrix. From these properties a new estimate of an arbitrary eigenvalue of a sum of Hermitian matrices is derived, which in turn is used to compute an approximate associated spectral projector. These estimates are applied for the first time to explain generic spectral features ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2019
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.100.115142